Poster: Secure Federated Learning Network Based on Client Selection

Anguo Jiang, Huan Zhou, Rui Chen, Hengtao Wang, Shouzhi Xu

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Federated learning (FL) enables the training of a global model using clients' local datasets, leveraging their computing resources for efficient machine learning while preserving user privacy. This paper explores FL in wireless networks, focusing on client selection and bandwidth allocation as key factors impacting latency, covert constraint and energy consumption. We propose the per-round energy drift plus cost (PEDPC) algorithm to address this optimization problem from an online perspective. The performance of the PEDPC algorithm is validated through simulations, evaluating latency and energy consumption under both IID and non-IID data distributions.

源语言英语
主期刊名SenSys 2024 - Proceedings of the 2024 ACM Conference on Embedded Networked Sensor Systems
出版商Association for Computing Machinery, Inc
865-866
页数2
ISBN(电子版)9798400706974
DOI
出版状态已出版 - 4 11月 2024
活动22nd ACM Conference on Embedded Networked Sensor Systems, SenSys 2024 - Hangzhou, 中国
期限: 4 11月 20247 11月 2024

出版系列

姓名SenSys 2024 - Proceedings of the 2024 ACM Conference on Embedded Networked Sensor Systems

会议

会议22nd ACM Conference on Embedded Networked Sensor Systems, SenSys 2024
国家/地区中国
Hangzhou
时期4/11/247/11/24

指纹

探究 'Poster: Secure Federated Learning Network Based on Client Selection' 的科研主题。它们共同构成独一无二的指纹。

引用此