TY - JOUR
T1 - Parameter-Free Multiview $K$ -Means Clustering With Coordinate Descent Method
AU - Nie, Feiping
AU - Liu, Han
AU - Wang, Rong
AU - Li, Xuelong
N1 - Publisher Copyright:
IEEE
PY - 2024
Y1 - 2024
N2 - Recently, more and more real-world datasets have been composed of heterogeneous but related features from diverse views. Multiview clustering provides a promising attempt at a solution for partitioning such data according to heterogeneous information. However, most existing methods suffer from hyper-parameter tuning trouble and high computational cost. Besides, there is still an opportunity for improvement in clustering performance. To this end, a novel multiview framework, called parameter-free multiview $k$ -means clustering with coordinate descent method (PFMVKM), is presented to address the above problems. Specifically, PFMVKM is completely parameter-free and learns the weights via a self-weighted scheme, which can avoid the intractable process of hyper-parameters tuning. Moreover, our model is capable of directly calculating the cluster indicator matrix, with no need to learn the cluster centroid matrix and the indicator matrix simultaneously as previous multiview methods have to do. What’s more, we propose an efficient optimization algorithm utilizing the idea of coordinate descent, which can not only reduce the computational complexity but also improve the clustering performance. Extensive experiments on various types of real datasets illustrate that the proposed method outperforms existing state-of-the-art competitors and conforms well with the actual situation.
AB - Recently, more and more real-world datasets have been composed of heterogeneous but related features from diverse views. Multiview clustering provides a promising attempt at a solution for partitioning such data according to heterogeneous information. However, most existing methods suffer from hyper-parameter tuning trouble and high computational cost. Besides, there is still an opportunity for improvement in clustering performance. To this end, a novel multiview framework, called parameter-free multiview $k$ -means clustering with coordinate descent method (PFMVKM), is presented to address the above problems. Specifically, PFMVKM is completely parameter-free and learns the weights via a self-weighted scheme, which can avoid the intractable process of hyper-parameters tuning. Moreover, our model is capable of directly calculating the cluster indicator matrix, with no need to learn the cluster centroid matrix and the indicator matrix simultaneously as previous multiview methods have to do. What’s more, we propose an efficient optimization algorithm utilizing the idea of coordinate descent, which can not only reduce the computational complexity but also improve the clustering performance. Extensive experiments on various types of real datasets illustrate that the proposed method outperforms existing state-of-the-art competitors and conforms well with the actual situation.
KW - <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$k$</tex-math> </i
KW - Clustering algorithms
KW - Coordinate descent
KW - Industries
KW - Information technology
KW - Matrix decomposition
KW - Optics
KW - Optimization
KW - Vectors
KW - multiview clustering
KW - parameter-free
UR - http://www.scopus.com/inward/record.url?scp=85188913234&partnerID=8YFLogxK
U2 - 10.1109/TNNLS.2024.3373532
DO - 10.1109/TNNLS.2024.3373532
M3 - 文章
AN - SCOPUS:85188913234
SN - 2162-237X
SP - 1
EP - 14
JO - IEEE Transactions on Neural Networks and Learning Systems
JF - IEEE Transactions on Neural Networks and Learning Systems
ER -