Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact

Chenxu Zhang, Jia Huang, Xi Li, Chao Zhang

科研成果: 期刊稿件文章同行评审

30 引用 (Scopus)

摘要

Carbon fiber-reinforced composite materials are widely employed in aircraft structures due to their high specific strength and high specific modulus. However, the poor impact resistance of carbon fiber reinforced composites creates challenges for aircraft design and maintenance. The introduction of a layer of glass fibers in the hybrid composites can effectively improve the impact performance of the composite laminate. In this work, finite element models for low-velocity impact of carbon fiber laminate and glass fiber laminate are established and validated. A VUMAT subroutine in Abaqus is implemented to evaluate the progressive damage of the composite materials, and a cohesive-zone model is employed to simulate the interface failure behavior. The impact resistance of hybrid composite laminates is systematically studied based on the results of the finite element simulation. Ten different hybrid configurations are studied and compared with a composite laminate having a single type of fiber reinforcement. The numerical results for the global mechanical response, damage modes and characteristics are extracted and systematically discussed. The results suggest that laminates having carbon fiber layers on the top and bottom surfaces with glass fiber layers between them perform the best in terms of energy absorption. When the glass fiber layers are used for the top and bottom surfaces with carbon fiber layers as the core, the presence of a carbon fiber layer with a ±45 ° orientation can help to reduce the damage area.

源语言英语
页(从-至)2873-2887
页数15
期刊Fibers and Polymers
21
12
DOI
出版状态已出版 - 12月 2020

指纹

探究 'Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact' 的科研主题。它们共同构成独一无二的指纹。

引用此