TY - GEN
T1 - NPU speaker verification system for interspeech 2020 far-field speaker verification challenge
AU - Zhang, Li
AU - Wu, Jian
AU - Xie, Lei
N1 - Publisher Copyright:
© 2020 ISCA
PY - 2020
Y1 - 2020
N2 - This paper describes the NPU system submitted to Interspeech 2020 Far-Field Speaker Verification Challenge (FFSVC). We particularly focus on far-field text-dependent SV from single (task1) and multiple microphone arrays (task3). The major challenges in such scenarios are short utterance and cross-channel and distance mismatch for enrollment and test. With the belief that better speaker embedding can alleviate the effects from short utterance, we introduce a new speaker embedding architecture - ResNet-BAM, which integrates a bottleneck attention module with ResNet as a simple and efficient way to further improve representation power of ResNet. This contribution brings up to 1% EER reduction. We further address the mismatch problem in three directions. First, domain adversarial training, which aims to learn domain-invariant features, can yield to 0.8% EER reduction. Second, front-end signal processing, including WPE and beamforming, has no obvious contribution, but together with data selection and domain adversarial training, can further contribute to 0.5% EER reduction. Finally, data augmentation, which works with a specifically-designed data selection strategy, can lead to 2% EER reduction. Together with the above contributions, in the middle challenge results, our single submission system (without multi-system fusion) achieves the first and second place on task 1 and task 3, respectively.
AB - This paper describes the NPU system submitted to Interspeech 2020 Far-Field Speaker Verification Challenge (FFSVC). We particularly focus on far-field text-dependent SV from single (task1) and multiple microphone arrays (task3). The major challenges in such scenarios are short utterance and cross-channel and distance mismatch for enrollment and test. With the belief that better speaker embedding can alleviate the effects from short utterance, we introduce a new speaker embedding architecture - ResNet-BAM, which integrates a bottleneck attention module with ResNet as a simple and efficient way to further improve representation power of ResNet. This contribution brings up to 1% EER reduction. We further address the mismatch problem in three directions. First, domain adversarial training, which aims to learn domain-invariant features, can yield to 0.8% EER reduction. Second, front-end signal processing, including WPE and beamforming, has no obvious contribution, but together with data selection and domain adversarial training, can further contribute to 0.5% EER reduction. Finally, data augmentation, which works with a specifically-designed data selection strategy, can lead to 2% EER reduction. Together with the above contributions, in the middle challenge results, our single submission system (without multi-system fusion) achieves the first and second place on task 1 and task 3, respectively.
KW - Data augmentation
KW - Domain adversarial training
KW - Far-field
KW - Speaker verification
UR - http://www.scopus.com/inward/record.url?scp=85098103062&partnerID=8YFLogxK
U2 - 10.21437/Interspeech.2020-2688
DO - 10.21437/Interspeech.2020-2688
M3 - 会议稿件
AN - SCOPUS:85098103062
SN - 9781713820697
T3 - Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
SP - 3471
EP - 3475
BT - Interspeech 2020
PB - International Speech Communication Association
T2 - 21st Annual Conference of the International Speech Communication Association, INTERSPEECH 2020
Y2 - 25 October 2020 through 29 October 2020
ER -