Non-destructive prediction of pork meat degradation using a stacked autoencoder classifier on hyperspectral images

B. B. Gallo, S. J.M. De Almeida, J. C.M. Bermudez, J. Chen, C. Richard

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This work presents initial results on a multitemporal hyperspectral image analysis method to evaluate the time degradation of pork meat. The proposed method is inexpensive and practically non-destructive. The hyperspectral data is analyzed and the relevant information is reduced to the information in only three wavelengths. The analysis is performed by a binary classifier composed by two stacked autoencoders and a softmax output layer. The use of autoencoders reduces tenfold the dimension of the input space. The proposed classifier has led to 97.2% of correct decisions, which indicates the great potential of the methodology to monitor the safety of meat.

源语言英语
主期刊名EUSIPCO 2019 - 27th European Signal Processing Conference
出版商European Signal Processing Conference, EUSIPCO
ISBN(电子版)9789082797039
DOI
出版状态已出版 - 9月 2019
活动27th European Signal Processing Conference, EUSIPCO 2019 - A Coruna, 西班牙
期限: 2 9月 20196 9月 2019

出版系列

姓名European Signal Processing Conference
2019-September
ISSN(印刷版)2219-5491

会议

会议27th European Signal Processing Conference, EUSIPCO 2019
国家/地区西班牙
A Coruna
时期2/09/196/09/19

指纹

探究 'Non-destructive prediction of pork meat degradation using a stacked autoencoder classifier on hyperspectral images' 的科研主题。它们共同构成独一无二的指纹。

引用此