Network immunization with distributed autonomy-oriented entities

Chao Gao, Jiming Liu, Ning Zhong

科研成果: 期刊稿件文章同行评审

54 引用 (Scopus)

摘要

Many communication systems, e.g., internet, can be modeled as complex networks. For such networks, immunization strategies are necessary for preventing malicious attacks or viruses being percolated from a node to its neighboring nodes following their connectivities. In recent years, various immunization strategies have been proposed and demonstrated, most of which rest on the assumptions that the strategies can be executed in a centralized manner and/or that the complex network at hand is reasonably stable (its topology will not change overtime). In other words, it would be difficult to apply them in a decentralized network environment, as often found in the real world. In this paper, we propose a decentralized and scalable immunization strategy based on a self-organized computing approach called autonomy-oriented computing (AOC) [1], [2]. In this strategy, autonomous behavior-based entities are deployed in a decentralized network, and are capable of collectively finding those nodes with high degrees of conductivities (i.e., those that can readily spread viruses). Through experiments involving both synthetic and real-world networks, we demonstrate that this strategy can effectively and efficiently locate highly-connected nodes in decentralized complex network environments of various topologies, and it is also scalable in handling large-scale decentralized networks. We have compared our strategy with some of the well-known strategies, including acquaintance and covering strategies on both synthetic and real-world networks.

源语言英语
文章编号5629333
页(从-至)1222-1229
页数8
期刊IEEE Transactions on Parallel and Distributed Systems
22
7
DOI
出版状态已出版 - 7 4月 2011
已对外发布

指纹

探究 'Network immunization with distributed autonomy-oriented entities' 的科研主题。它们共同构成独一无二的指纹。

引用此