Multifold Acceleration of Diffusion MRI via Deep Learning Reconstruction from Slice-Undersampled Data

Yoonmi Hong, Geng Chen, Pew Thian Yap, Dinggang Shen

科研成果: 书/报告/会议事项章节会议稿件同行评审

16 引用 (Scopus)

摘要

Diffusion MRI (dMRI), while powerful for characterization of tissue microstructure, suffers from long acquisition time. In this paper, we present a method for effective diffusion MRI reconstruction from slice-undersampled data. Instead of full diffusion-weighted (DW) image volumes, only a subsample of equally-spaced slices need to be acquired. We show that complementary information from DW volumes corresponding to different diffusion wavevectors can be harnessed using graph convolutional neural networks for reconstruction of the full DW volumes. The experimental results indicate a high acceleration factor of up to 5 can be achieved with minimal information loss.

源语言英语
主期刊名Information Processing in Medical Imaging - 26th International Conference, IPMI 2019, Proceedings
编辑Albert C.S. Chung, James C. Gee, Paul A. Yushkevich, Siqi Bao
出版商Springer Verlag
530-541
页数12
ISBN(印刷版)9783030203504
DOI
出版状态已出版 - 2019
已对外发布
活动26th International Conference on Information Processing in Medical Imaging, IPMI 2019 - Hong Kong, 中国
期限: 2 6月 20197 6月 2019

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
11492 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议26th International Conference on Information Processing in Medical Imaging, IPMI 2019
国家/地区中国
Hong Kong
时期2/06/197/06/19

指纹

探究 'Multifold Acceleration of Diffusion MRI via Deep Learning Reconstruction from Slice-Undersampled Data' 的科研主题。它们共同构成独一无二的指纹。

引用此