Multi-modal Pathological Pre-training via Masked Autoencoders for Breast Cancer Diagnosis

Mengkang Lu, Tianyi Wang, Yong Xia

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Breast cancer (BC) is one of the most common cancers identified globally among women, which has become the leading cause of death. Multi-modal pathological images contain different information for BC diagnosis. Hematoxylin and eosin (H &E) staining images could reveal a considerable amount of microscopic anatomy. Immunohistochemical (IHC) staining images provide the evaluation of the expression of various biomarkers, such as the human epidermal growth factor receptor (HER2) hybridization. In this paper, we propose a multi-modal pre-training model via pathological images for BC diagnosis. The proposed pre-training model contains three modules: (1) the modal-fusion encoder, (2) the mixed attention, and (3) the modal-specific decoders. The pre-trained model could be performed on multiple relevant tasks (IHC Reconstruction and IHC classification). The experiments on two datasets (HEROHE Challenge and BCI Challenge) show state-of-the-art results.

源语言英语
主期刊名Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
编辑Hayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
出版商Springer Science and Business Media Deutschland GmbH
457-466
页数10
ISBN(印刷版)9783031439865
DOI
出版状态已出版 - 2023
活动26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, 加拿大
期限: 8 10月 202312 10月 2023

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14225 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
国家/地区加拿大
Vancouver
时期8/10/2312/10/23

指纹

探究 'Multi-modal Pathological Pre-training via Masked Autoencoders for Breast Cancer Diagnosis' 的科研主题。它们共同构成独一无二的指纹。

引用此