Multi-level transfer learning from near-field to far-field speaker verification

Li Zhang, Qing Wang, Kong Aik Lee, Lei Xie, Haizhou Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

In far-field speaker verification, the performance of speaker embeddings is susceptible to degradation when there is a mismatch between the conditions of enrollment and test speech. To solve this problem, we propose the feature-level and instance-level transfer learning in the teacher-student framework to learn a domain-invariant embedding space. For the feature-level knowledge transfer, we develop the contrastive loss to transfer knowledge from teacher model to student model, which not only decrease the intra-class distance, but also enlarge the inter-class distance. Moreover, we propose the instance-level pairwise distance transfer method to force the student model to preserve pairwise instances distance from the well optimized embedding space of the teacher model. On FFSVC 2020 evaluation set, our EER on Full-eval trials is relatively reduced by 13.9% compared with the fusion system result on Partial-eval trials of Task2. On Task1, compared with the winner’s DenseNet result on Partial-eval trials, our minDCF on Full-eval trials is relatively reduced by 6.3%. On Task3, the EER and minDCF of our proposed method on Full-eval trials are very close to the result of the fusion system on Partial-eval trials. Our results also outperform other competitive domain adaptation methods.

源语言英语
主期刊名22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
出版商International Speech Communication Association
1963-1967
页数5
ISBN(电子版)9781713836902
DOI
出版状态已出版 - 2021
活动22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021 - Brno, 捷克共和国
期限: 30 8月 20213 9月 2021

出版系列

姓名Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
3
ISSN(印刷版)2308-457X
ISSN(电子版)1990-9772

会议

会议22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
国家/地区捷克共和国
Brno
时期30/08/213/09/21

指纹

探究 'Multi-level transfer learning from near-field to far-field speaker verification' 的科研主题。它们共同构成独一无二的指纹。

引用此