摘要
Nickel pyrophosphate (Ni2P2O7) is considered as a potential next-generation electrode material for supercapacitors. Here, we report a new type of cathode material for supercapacitors in, which consists of rhombic dodecahedron Co3O4-C growing on two-dimensional (2D) Ni2P2O7 nanosheets. Surprisingly, Co3O4-C/Ni2P2O7 materials exhibit bright electrochemical properties with a relatively high specific capacitance of 2537.78 Fg−1 and remarkable cyclic stability (88.5% after 3000 cycles). Therefore, the prepared Co3O4-C/Ni2P2O7 electrode material is a significant candidate material for supercapacitors. The synthesis process is simple, low cost and environmentally friendly. Notably, Co3O4-C/Ni2P2O7 products have excellent electrochemical properties and are candidate electrode materials for supercapacitors. The Co3O4-C/Ni2P2O7 products have excellent electrochemical properties, which indicate the Co3O4-C/Ni2P2O7 materials imply their promising potential applications in the energy storage. Most importantly, this work provides a scalable strategy for morphology-controlled synthesis of metal oxides by recrystallization.
源语言 | 英语 |
---|---|
文章编号 | 122242 |
期刊 | Chemical Engineering Journal |
卷 | 378 |
DOI | |
出版状态 | 已出版 - 15 12月 2019 |
已对外发布 | 是 |