LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing

Min Zhao, Longbin Yan, Jie Chen

科研成果: 期刊稿件文章同行评审

51 引用 (Scopus)

摘要

Blind hyperspectral unmixing is an important technique in hyperspectral image analysis, aiming at estimating endmembers and their respective fractional abundances. Consider the limitations of using the linear model, nonlinear unmixing methods have been studied under different model assumptions. However, existing nonlinear unmixing algorithms do not fully exploit spectral and spatial correlation information. This paper proposes a nonsymmetric autoencoder network to overcome this issue. The proposed scheme benefits from the universal modeling ability of deep neural networks and enables to learn the nonlinear relation from the data. Particularly, the long short-term memory network (LSTM) structure is included to capture spectral correlation information, and a spatial regularization is introduced to improve the spatial continuity of results. An attention mechanism is also used to further enhance the unmixing performance. Experiments with synthetic and real data are conducted to illustrate the effectiveness of the proposed method.

源语言英语
文章编号9326377
页(从-至)295-309
页数15
期刊IEEE Journal on Selected Topics in Signal Processing
15
2
DOI
出版状态已出版 - 2月 2021

指纹

探究 'LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing' 的科研主题。它们共同构成独一无二的指纹。

引用此