Low-Sidelobe Pattern Synthesis for Sparse Conformal Arrays Based on Multiagent Genetic Algorithm

Ganyu Liu, Hailiang Zhu, Kai Wang, Yuwei Qiu, Jinchao Mou, Pei Zheng, Gao Wei

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

In this paper, multiagent genetic algorithm (MAGA) is firstly applied to tackle the synthesis of conformal sparse array, a constrained multi-objective optimization problem. Moreover, a model considered low peak sidelobe level (PSLL) is given for conformal sparse array synthesis. For the antenna array deployed on a quadric surface, the PSLL can be reduced by obtaining the optimal antenna element arrangement. An example of 256-element array synthesis with a 56% sparse rate proves MAGA as an effective optimization tool for conformal sparse arrays in low computational cost.

源语言英语
主期刊名2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
1044-1045
页数2
ISBN(电子版)9781665496582
DOI
出版状态已出版 - 2022
活动2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Denver, 美国
期限: 10 7月 202215 7月 2022

出版系列

姓名2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings

会议

会议2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022
国家/地区美国
Denver
时期10/07/2215/07/22

指纹

探究 'Low-Sidelobe Pattern Synthesis for Sparse Conformal Arrays Based on Multiagent Genetic Algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此