Low-Rank Approximation of Matrices Via A Rank-Revealing Factorization with Randomization

Maboud Farzaneh Kaloorazi, Jie Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Given a matrix A with numerical rank k, the two-sided orthogonal decomposition (TSOD) computes a factorization A = UDVT, where U and V are unitary, and D is (upper/lower) triangular. TSOD is rank-revealing as the middle factor D reveals the rank of A. The computation of TSOD, however, is demanding, especially when a low-rank representation of the input matrix is desired. To treat such a case efficiently, in this paper we present an algorithm called randomized pivoted TSOD (RP-TSOD) that constructs a highly accurate approximation to the TSOD decomposition. Key in our work is the exploitation of randomization, and we furnish (i) upper bounds on the error of the low-rank approximation, and (ii) bounds for the canonical angles between the approximate and the exact singular subspaces, which take into account the randomness. Our bounds describe the characteristics and behavior of our proposed algorithm. We validate the effectiveness of our proposed algorithm and devised bounds with synthetic data as well as real data of image reconstruction problem.

源语言英语
主期刊名2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
5815-5819
页数5
ISBN(电子版)9781509066315
DOI
出版状态已出版 - 5月 2020
活动2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, 西班牙
期限: 4 5月 20208 5月 2020

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2020-May
ISSN(印刷版)1520-6149

会议

会议2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
国家/地区西班牙
Barcelona
时期4/05/208/05/20

指纹

探究 'Low-Rank Approximation of Matrices Via A Rank-Revealing Factorization with Randomization' 的科研主题。它们共同构成独一无二的指纹。

引用此