Linear Likelihood Approximation Filter for Nonlinear State Estimation

Xiaoxu Wang, Haoran Cui, Quan Pan

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In the nonlinear estimation problem, the direct evaluation of posterior density function (PDF) is always intractable due to the complex nonlinear integral. In this paper, we propose a linear likelihood approximation filter (LLAF), where the Variational Bayes (VB) framework was employed to indirectly calculate the posterior PDF. The key of achieving LLAF is to firstly use the linear Gaussian distribution with compensate parameters (CPs) to approximately express the measurement likelihood probability with the nonlinearity. Then, in VB framework, CPs identification and state estimation iterate, i.e. that CPs is identified for correcting the state while conversely, the state estimation is applied for identifying CPs. Compared with these existing nonlinear filters using the direct evaluation of PDF, LLAF improves the estimation accuracy with the simple computation complexity. Finally, the good performance of our proposed LLAF is demonstrated in the simulation of ballistic target tracking.

源语言英语
主期刊名2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781538611715
DOI
出版状态已出版 - 8月 2018
活动2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018 - Xiamen, 中国
期限: 10 8月 201812 8月 2018

出版系列

姓名2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018

会议

会议2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018
国家/地区中国
Xiamen
时期10/08/1812/08/18

指纹

探究 'Linear Likelihood Approximation Filter for Nonlinear State Estimation' 的科研主题。它们共同构成独一无二的指纹。

引用此