Light Field Saliency Detection with Dual Local Graph Learning and Reciprocative Guidance

Nian Liu, Wangbo Zhao, Dingwen Zhang, Junwei Han, Ling Shao

科研成果: 书/报告/会议事项章节会议稿件同行评审

43 引用 (Scopus)

摘要

The application of light field data in salient object detection is becoming increasingly popular recently. The difficulty lies in how to effectively fuse the features within the focal stack and how to cooperate them with the feature of the all-focus image. Previous methods usually fuse focal stack features via convolution or ConvLSTM, which are both less effective and ill-posed. In this paper, we model the information fusion within focal stack via graph networks. They introduce powerful context propagation from neighbouring nodes and also avoid ill-posed implementations. On the one hand, we construct local graph connections thus avoiding prohibitive computational costs of traditional graph networks. On the other hand, instead of processing the two kinds of data separately, we build a novel dual graph model to guide the focal stack fusion process using all-focus patterns. To handle the second difficulty, previous methods usually implement one-shot fusion for focal stack and all-focus features, hence lacking a thorough exploration of their supplements. We introduce a reciprocative guidance scheme and enable mutual guidance between these two kinds of information at multiple steps. As such, both kinds of features can be enhanced iteratively, finally benefiting the saliency prediction. Extensive experimental results show that the proposed models are all beneficial and we achieve significantly better results than state-of-the-art methods.

源语言英语
主期刊名Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
出版商Institute of Electrical and Electronics Engineers Inc.
4692-4701
页数10
ISBN(电子版)9781665428125
DOI
出版状态已出版 - 2021
活动18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, 加拿大
期限: 11 10月 202117 10月 2021

出版系列

姓名Proceedings of the IEEE International Conference on Computer Vision
ISSN(印刷版)1550-5499

会议

会议18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
国家/地区加拿大
Virtual, Online
时期11/10/2117/10/21

指纹

探究 'Light Field Saliency Detection with Dual Local Graph Learning and Reciprocative Guidance' 的科研主题。它们共同构成独一无二的指纹。

引用此