Learn to Update Digital Twins with Incremental Scenarios

Mengjie Lee, Yujiao Hu, Yining Zhu, Xiaomao Zhou, Yue Zhao, Xingshe Zhou

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Digital twins serve as vital tools for monitoring and simulating real-world systems, yet ensuring their accuracy and adaptability in dynamic scenarios remains a challenge. In this paper, we introduce FlexiTwin, a digital twin updating assistance platform seamlessly integrated with AdaSor, a lightweight adaptive data selector. FlexiTwin automates the construction of incremental learning datasets for updating digital twins within specified time constraints, ensuring their adaptation to new scenarios while preserving historical knowledge. Through simulations focusing on UAV energy management, we show that FlexiTwin substantially enhances the adaptability of digital twins to new scenarios while effectively preserving their accuracy in historical scenarios.

源语言英语
主期刊名NetAISys 2024 - Proceedings of the 2024 2nd International Workshop on Networked AI Systems
出版商Association for Computing Machinery, Inc
7-12
页数6
ISBN(电子版)9798400706615
DOI
出版状态已出版 - 3 6月 2024
活动2nd International Workshop on Networked AI Systems, NetAISys 2024 - Minato-ku, 日本
期限: 3 6月 20247 6月 2024

出版系列

姓名NetAISys 2024 - Proceedings of the 2024 2nd International Workshop on Networked AI Systems

会议

会议2nd International Workshop on Networked AI Systems, NetAISys 2024
国家/地区日本
Minato-ku
时期3/06/247/06/24

指纹

探究 'Learn to Update Digital Twins with Incremental Scenarios' 的科研主题。它们共同构成独一无二的指纹。

引用此