Laplacian spectral moment and Laplacian Estrada index of random graphs

Nan Gao, Dan Hu, Xiaogang Liu, Shenggui Zhang

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Let G be a simple graph with n vertices and let μ1≥μ2≥⋯≥μn=0 be the Laplacian eigenvalues of G. The k-th Laplacian spectral moment of G is defined to be LMk(G)=∑i=1nμi k(G), where k is a non-negative integer; and the Laplacian Estrada index of G is defined as LEE(G)=∑i=1neμi . In this paper, we first estimate these two indices for almost all graphs, and then we give lower and upper bounds to these two indices for almost all multipartite graphs.

源语言英语
页(从-至)1299-1307
页数9
期刊Journal of Mathematical Analysis and Applications
461
2
DOI
出版状态已出版 - 15 5月 2018

指纹

探究 'Laplacian spectral moment and Laplacian Estrada index of random graphs' 的科研主题。它们共同构成独一无二的指纹。

引用此