Kullback-leibler averaging for multitarget density fusion

Kai Da, Tiancheng Li, Yongfeng Zhu, Hongqi Fan, Qiang Fu

科研成果: 书/报告/会议事项章节会议稿件同行评审

51 引用 (Scopus)

摘要

This paper addresses the linear and log-linear fusion approaches to multitarget density fusion which yield arithmetic average (AA) and geometric average (GA), respectively. We reaffirm Abbas’s finding in 2009 that both AA and GA can be related to the minimization of the Kullback-Leibler divergence (KLD) between the fusing densities and the fused result, which differ from each other in the reference used to measure the KLD: the AA uses the fusing densities while the GA uses the fused density. We derive the explicit AA expressions for fusing some known multitarget densities and discuss the implementation issues. The results serve as the theoretical basis for designing distributed random finite set filters for distributed multitarget tracking.

源语言英语
主期刊名Distributed Computing and Artificial Intelligence, 16th International Conference, 2019
编辑Francisco Herrera, Kenji Matsui, Sara Rodríguez-González
出版商Springer Verlag
253-261
页数9
ISBN(印刷版)9783030238865
DOI
出版状态已出版 - 2020
活动16th International Conference on Distributed Computing and Artificial Intelligence, DCAI 2019 - Ávila, 西班牙
期限: 26 6月 201928 6月 2019

出版系列

姓名Advances in Intelligent Systems and Computing
1003
ISSN(印刷版)2194-5357
ISSN(电子版)2194-5365

会议

会议16th International Conference on Distributed Computing and Artificial Intelligence, DCAI 2019
国家/地区西班牙
Ávila
时期26/06/1928/06/19

指纹

探究 'Kullback-leibler averaging for multitarget density fusion' 的科研主题。它们共同构成独一无二的指纹。

引用此