Joint state and parameter estimation in particle filtering and stochastic optimization

Xiaojun Yang, Keyi Xing, Kunlin Shi, Quan Pan

科研成果: 期刊稿件文章同行评审

20 引用 (Scopus)

摘要

In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering and Simultaneous Perturbation Stochastic Approximation (SPSA) technique. The estimations of parameters are obtained by maximum-likelihood estimation and sampling within particle filtering framework, and the SPSA is used for stochastic optimization and to approximate the gradient of the cost function. The proposed algorithm achieves combined estimation of dynamic state and static parameters of nonlinear systems. Simulation result demonstrates the feasibility and efficiency of the proposed algorithm.

源语言英语
页(从-至)215-220
页数6
期刊Journal of Control Theory and Applications
6
2
DOI
出版状态已出版 - 5月 2008

指纹

探究 'Joint state and parameter estimation in particle filtering and stochastic optimization' 的科研主题。它们共同构成独一无二的指纹。

引用此