Investigation on flow characteristics and performance estimation of a hybrid SVC nozzle

S. Jing-Wei, W. Zhan-Xue, Z. Li, S. Xiao-Lin

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Higher vector efficiency of fluidic thrust vectoring (FTV) technology results in less requirement on secondary flow mass, which helps to reduce the influence of secondary flow on the performance of an aero-engine. In the paper, a new concept of FTV, named as a hybrid shock vector control (SVC) nozzle, was proposed to promote the vector efficiency of a SVC nozzle. It adopts a rotatable valve with a secondary flow injection to enhance the jet penetration, so as to improve the vector performance. The flow characteristics of a hybrid SVC nozzle were investigated numerically by solving 2D RANS equations. The influence of secondary pressure ratio (SPR) and rotatable valve angle on vector performance were conducted. Then, the coupling performance of a hybrid SVC nozzle and an aero-engine was estimated, by using the approximate model of a hybrid SVC nozzle and the performance simulation model of an aero-engine. Results show that, a desirable vector efficiency of 2.96 / %-ω (the vector angle achieved by using secondary flow of 1% of primary flow) of a hybrid SVC nozzle was obtained. In the coupling progress, when a secondary flow of 5.3% of primary flow was extracted from fan exit to a hybrid SVC nozzle, a vector angle of 14.1°, and a vector efficiency of 2.91/ %-ω were achieved. Meanwhile the thrust of the aero-engine thrust decreased by 5.6% and the specific fuel consumption (SFC) increased by 0.5%.

源语言英语
页(从-至)25-38
页数14
期刊Journal of Applied Fluid Mechanics
13
1
DOI
出版状态已出版 - 2020

指纹

探究 'Investigation on flow characteristics and performance estimation of a hybrid SVC nozzle' 的科研主题。它们共同构成独一无二的指纹。

引用此