Integrating spectral and spatial information into deep convolutional Neural Networks for hyperspectral classification

Shaohui Mei, Jingyu Ji, Qianqian Bi, Junhui Hou, Qian Du, Wei Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

66 引用 (Scopus)

摘要

Deep convolutional neural networks (CNNs) have brought in achievements in image classification and tar- get detection. In this paper, we propose a novel five-layer CNN for hyperspectral classification by encountering recent achievement in deep learning area, such as batch normaliza- tion, dropout, Parametric Rectified Linear Unit (PReLu) acti- vation function. By taking advantage of the specific charac- teristics of hyperspectral images, spatial context and spectral information are elegantly integrated into the framework. Ex- perimental results demonstrate that our proposed CNN out- performs the state-of-the-art methods.

源语言英语
主期刊名2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
5067-5070
页数4
ISBN(电子版)9781509033324
DOI
出版状态已出版 - 1 11月 2016
活动36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Beijing, 中国
期限: 10 7月 201615 7月 2016

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2016-November

会议

会议36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
国家/地区中国
Beijing
时期10/07/1615/07/16

指纹

探究 'Integrating spectral and spatial information into deep convolutional Neural Networks for hyperspectral classification' 的科研主题。它们共同构成独一无二的指纹。

引用此