Influence of thermal shock and environment temperature on mechanical properties of C/SiC/GH783 joint brazed with Cu-Ti + Mo

Juanli Deng, Bohan Zheng, Shangwu Fan, Xing Wang, Litong Zhang, Laifei Cheng

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

The carbon reinforced silicon carbide ceramic matrix composites (C/SiC) were brazed to Fe-Ni-Co superalloy (GH783) with Cu-Ti + Mo solder under vacuum at 1000 °C. The influence of thermal shock (in air at 800 °C) and environment temperature on mechanical properties of the joint were investigated. The joint between C/SiC composites and GH783 was dense, crack free, and was comprised of reaction layer, stress relief layer, plastoelastic layer, and diffusion layer. Thermal shock damage and oxidative damage were both existing after the thermal shock. Therefore, the flexural strength of the joint decreased dramatically with the increase of thermal shock times. After 5, 10, and 15 times of thermal shock, the flexural strength of the joint decreased to 42.9, 22.7, and 9.7% of the initial strength, respectively. The flexural strength of the joint decreased dramatically with the increase of environment temperature because of the thermal mismatch between C/SiC and the interface reaction layer. The flexural strength of the joint at 600, 800, and 900 °C was decreased to 60, 39, and 29% of that at room temperature, respectively. [Figure not available: see fulltext.]

源语言英语
页(从-至)199-205
页数7
期刊Advanced Composites and Hybrid Materials
1
1
DOI
出版状态已出版 - 3月 2018

指纹

探究 'Influence of thermal shock and environment temperature on mechanical properties of C/SiC/GH783 joint brazed with Cu-Ti + Mo' 的科研主题。它们共同构成独一无二的指纹。

引用此