Incorporating Typological Features into Language Selection for Multilingual Neural Machine Translation

Chenggang Mi, Shaolin Zhu, Yi Fan, Lei Xie

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

In this paper, we propose to use rich semantic and typological information of languages to improve the language selection method for multilingual NMT. In particular, we first use a graph-based model to output the most semantic similarity languages; then, a random forest model is built which integrates features such as data size, language family, word formation, morpheme overlap, word order, POS tag and syntax similarity together to predict the final target language(s). Experimental results on several datasets show that our method achieves consistent improvements over existing approaches both on language selection and multilingual NMT.

源语言英语
主期刊名Web and Big Data - 5th International Joint Conference, APWeb-WAIM 2021, Proceedings
编辑Leong Hou U, Marc Spaniol, Yasushi Sakurai, Junying Chen
出版商Springer Science and Business Media Deutschland GmbH
348-357
页数10
ISBN(印刷版)9783030858957
DOI
出版状态已出版 - 2021
活动5th International Joint Conference on Asia-Pacific Web and Web-Age Information Management, APWeb-WAIM 2021 - Guangzhou, 中国
期限: 23 8月 202125 8月 2021

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12858 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议5th International Joint Conference on Asia-Pacific Web and Web-Age Information Management, APWeb-WAIM 2021
国家/地区中国
Guangzhou
时期23/08/2125/08/21

指纹

探究 'Incorporating Typological Features into Language Selection for Multilingual Neural Machine Translation' 的科研主题。它们共同构成独一无二的指纹。

引用此