跳到主要导航
跳到搜索
跳到主要内容
西北工业大学 国内
English
中文
国内
简介
研究单位
科研成果
按专业知识、名称或附属进行搜索
Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis
Qiyang Xiao, Sen Li, Lin Zhou,
Wentao Shi
海洋研究院
Henan University
科研成果
:
期刊稿件
›
文章
›
同行评审
24
引用 (Scopus)
综述
指纹
指纹
探究 'Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Computer Science
Complex Environment
33%
Convolutional Neural Network
100%
Decomposition Method
33%
Deep Learning Method
33%
Domain Feature
66%
Fault Diagnosis
33%
Feature Extraction
66%
Feature Map
33%
Frequency Domain
33%
Image Frequency
33%
Machinery Fault Diagnosis
100%
Neural Network
33%
Nonstationary Signal
33%
Recognition Rate
33%
Signal Component
33%
Subjective Experience
33%
Wavelet Transform
33%
Engineering
Convolutional Neural Network
100%
Deep Learning Method
25%
Domain Feature
50%
Fault Diagnosis
100%
Feature Extraction
50%
Frequency Domain
25%
Image Frequency
25%
Recognition Rate
25%
Rotating Machinery
100%
Signal Component
25%
Subjective Experience
25%
Time Domain
25%
Two Dimensional
50%
Variational Mode Decomposition
100%
Chemical Engineering
Deep Learning Method
50%
Neural Network
100%