TY - JOUR
T1 - Improved Crystallization Quality of FAPbBr3Single Crystals by a Seeded Solution Method
AU - Liu, Xin
AU - Zhang, Quanchao
AU - Zhao, Dou
AU - Bai, Ruichen
AU - Ruan, Yinjie
AU - Zhang, Binbin
AU - Li, Fangpei
AU - Zhu, Menghua
AU - Jie, Wanqi
AU - Xu, Yadong
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/11/16
Y1 - 2022/11/16
N2 - Solution-grown hybrid perovskite, FAPbBr3, has attracted great attentions recently due to its inspiring optoelectronic properties and low-cost preparation method. However, challenges of solution growth for FAPbBr3 bulk crystals remain yet, such as uncontrollable crystalline morphologies, irregular shapes, and limited crystal sizes, which are attributed to the dense crystallization nucleus. In this work, we investigate the effects of growth conditions and seed behaviors on the crystallization quality and the yield of FAPbBr3 single crystals. First, the spontaneous nucleation is tailored by optimizing the precursor concentration and heating rate. Furthermore, the seeded crystals are introduced to solve the issues related to the morphology and the yield of single crystals. Based on the above-mentioned investigations, an optimized growth method, a seeded solution method, under a heating rate of 0.1 °C/h is proposed, and centimeter-scale FAPbBr3 single crystals with a very narrow FWHM of high-resolution X-ray diffraction rocking curves and a high yield of ∼100% of single crystals are obtained. The resulting FAPbBr3 single crystal exhibits a bulk resistivity of 3.42 × 109 ω·cm and a superior ION/IOFF ratio over 104 under 405 nm light at a bias of 10 V. Finally, the pulse height spectra with an energy resolution of ∼21.4% are also achieved based on an AZO/FAPbBr3/Au detector, illuminated using an uncollimated 241Am@5.49 MeV α-particle source at room temperature. This modified seeded solution method shows great potential in preparing high-quality and high-yield perovskite single crystals.
AB - Solution-grown hybrid perovskite, FAPbBr3, has attracted great attentions recently due to its inspiring optoelectronic properties and low-cost preparation method. However, challenges of solution growth for FAPbBr3 bulk crystals remain yet, such as uncontrollable crystalline morphologies, irregular shapes, and limited crystal sizes, which are attributed to the dense crystallization nucleus. In this work, we investigate the effects of growth conditions and seed behaviors on the crystallization quality and the yield of FAPbBr3 single crystals. First, the spontaneous nucleation is tailored by optimizing the precursor concentration and heating rate. Furthermore, the seeded crystals are introduced to solve the issues related to the morphology and the yield of single crystals. Based on the above-mentioned investigations, an optimized growth method, a seeded solution method, under a heating rate of 0.1 °C/h is proposed, and centimeter-scale FAPbBr3 single crystals with a very narrow FWHM of high-resolution X-ray diffraction rocking curves and a high yield of ∼100% of single crystals are obtained. The resulting FAPbBr3 single crystal exhibits a bulk resistivity of 3.42 × 109 ω·cm and a superior ION/IOFF ratio over 104 under 405 nm light at a bias of 10 V. Finally, the pulse height spectra with an energy resolution of ∼21.4% are also achieved based on an AZO/FAPbBr3/Au detector, illuminated using an uncollimated 241Am@5.49 MeV α-particle source at room temperature. This modified seeded solution method shows great potential in preparing high-quality and high-yield perovskite single crystals.
KW - crystal growth rate
KW - FAPbBr
KW - morphology control
KW - nucleation control
KW - photon response
KW - α-particle detection
UR - http://www.scopus.com/inward/record.url?scp=85141597830&partnerID=8YFLogxK
U2 - 10.1021/acsami.2c15343
DO - 10.1021/acsami.2c15343
M3 - 文章
C2 - 36322522
AN - SCOPUS:85141597830
SN - 1944-8244
VL - 14
SP - 51130
EP - 51136
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 45
ER -