Improved Adaptive Kalman Filter with Unknown Process Noise Covariance

Jirong Ma, Hua Lan, Zengfu Wang, Xuezhi Wang, Quan Pan, Bill Moran

科研成果: 书/报告/会议事项章节会议稿件同行评审

26 引用 (Scopus)

摘要

This paper considers the joint recursive estimation of the dynamic state and the time-varying process noise covariance for a linear state space model. The conjugate prior on the process noise covariance, the inverse Wishart distribution, provides a latent variable. A variational Bayesian inference framework is then adopted to iteratively estimate the posterior density functions of the dynamic state, process noise covariance and the introduced latent variable. The performance of the algorithm is demonstrated with simulated data in a target tracking application.

源语言英语
主期刊名2018 21st International Conference on Information Fusion, FUSION 2018
出版商Institute of Electrical and Electronics Engineers Inc.
2054-2058
页数5
ISBN(印刷版)9780996452762
DOI
出版状态已出版 - 5 9月 2018
活动21st International Conference on Information Fusion, FUSION 2018 - Cambridge, 英国
期限: 10 7月 201813 7月 2018

出版系列

姓名2018 21st International Conference on Information Fusion, FUSION 2018

会议

会议21st International Conference on Information Fusion, FUSION 2018
国家/地区英国
Cambridge
时期10/07/1813/07/18

指纹

探究 'Improved Adaptive Kalman Filter with Unknown Process Noise Covariance' 的科研主题。它们共同构成独一无二的指纹。

引用此