TY - JOUR
T1 - Importance analysis for models with correlated input variables by the state dependent parameters method
AU - Li, Luyi
AU - Lu, Zhenzhou
AU - Zhou, Changcong
PY - 2011/12
Y1 - 2011/12
N2 - For clearly exploring the origin of the variance of the output response in case the correlated input variables are involved, a novel method on the state dependent parameters (SDP) approach is proposed to decompose the contribution by correlated input variables to the variance of output response into two parts: the uncorrelated contribution due to the unique variations of a variable and the correlated one due to the variations of a variable correlated with other variables. The correlated contribution is composed by the components of the individual input variable correlated with each of the other input variables. An effective and simple SDP method in concept is further proposed to decompose the correlated contribution into the components, on which a second order importance matrix can be solved for explicitly exposing the contribution components of the correlated input variable to the variance of the output response. Compared with the existing regression-based method for decomposing the contribution by correlated input variables to the variance of the output response, the proposed method is not only applicable for linear response functions, but is also suitable for nonlinear response functions. It has advantages both in efficiency and accuracy, which are demonstrated by several numerical and engineering examples.
AB - For clearly exploring the origin of the variance of the output response in case the correlated input variables are involved, a novel method on the state dependent parameters (SDP) approach is proposed to decompose the contribution by correlated input variables to the variance of output response into two parts: the uncorrelated contribution due to the unique variations of a variable and the correlated one due to the variations of a variable correlated with other variables. The correlated contribution is composed by the components of the individual input variable correlated with each of the other input variables. An effective and simple SDP method in concept is further proposed to decompose the correlated contribution into the components, on which a second order importance matrix can be solved for explicitly exposing the contribution components of the correlated input variable to the variance of the output response. Compared with the existing regression-based method for decomposing the contribution by correlated input variables to the variance of the output response, the proposed method is not only applicable for linear response functions, but is also suitable for nonlinear response functions. It has advantages both in efficiency and accuracy, which are demonstrated by several numerical and engineering examples.
KW - Correlated contribution
KW - Correlated input variable
KW - Importance matrix
KW - Importance measure
KW - State dependent parameters method
KW - Uncorrelated contribution
UR - http://www.scopus.com/inward/record.url?scp=82255175541&partnerID=8YFLogxK
U2 - 10.1016/j.camwa.2011.10.034
DO - 10.1016/j.camwa.2011.10.034
M3 - 文章
AN - SCOPUS:82255175541
SN - 0898-1221
VL - 62
SP - 4547
EP - 4556
JO - Computers and Mathematics with Applications
JF - Computers and Mathematics with Applications
IS - 12
ER -