Importance analysis for models with correlated input variables by the state dependent parameters method

Luyi Li, Zhenzhou Lu, Changcong Zhou

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

For clearly exploring the origin of the variance of the output response in case the correlated input variables are involved, a novel method on the state dependent parameters (SDP) approach is proposed to decompose the contribution by correlated input variables to the variance of output response into two parts: the uncorrelated contribution due to the unique variations of a variable and the correlated one due to the variations of a variable correlated with other variables. The correlated contribution is composed by the components of the individual input variable correlated with each of the other input variables. An effective and simple SDP method in concept is further proposed to decompose the correlated contribution into the components, on which a second order importance matrix can be solved for explicitly exposing the contribution components of the correlated input variable to the variance of the output response. Compared with the existing regression-based method for decomposing the contribution by correlated input variables to the variance of the output response, the proposed method is not only applicable for linear response functions, but is also suitable for nonlinear response functions. It has advantages both in efficiency and accuracy, which are demonstrated by several numerical and engineering examples.

源语言英语
页(从-至)4547-4556
页数10
期刊Computers and Mathematics with Applications
62
12
DOI
出版状态已出版 - 12月 2011

指纹

探究 'Importance analysis for models with correlated input variables by the state dependent parameters method' 的科研主题。它们共同构成独一无二的指纹。

引用此