Identify Hierarchical Structures from Task-Based fMRI Data via Hybrid Spatiotemporal Neural Architecture Search Net

Wei Zhang, Lin Zhao, Qing Li, Shijie Zhao, Qinglin Dong, Xi Jiang, Tuo Zhang, Tianming Liu

科研成果: 书/报告/会议事项章节会议稿件同行评审

25 引用 (Scopus)

摘要

The hierarchical organization of brain function has been an established concept in the neuroscience field. Recently, these hierarchical organizations have been extensively investigated in terms of how such hierarchical functional networks are constructed in the human brain via a variety of deep learning models. However, a key problem of how to determine the optimal neural architecture (NA), e.g., hyper parameters, of deep model has not been solved yet. To address this question, in this work, a novel Hybrid Spatiotemporal Neural Architecture Search Net (HS-NASNet) is proposed by jointly using Evolutionary Optimizer, Deep Belief Networks (DBN) and Deep LASSO to reasonably determine the NA, thus revealing the latent hierarchical spatiotemporal features based on the Human Connectome Project (HCP) 900 fMRI datasets. Briefly, this HS-NASNet can automatically search the global optimal NA of DBN given the search space, and then the optimized DBN can extract the weights between two adjacent layers of the optimal NA, which are then treated as the hierarchical temporal dictionaries for Deep LASSO to identify the corresponding hierarchical spatial maps. Our results demonstrate that the optimized deep model can achieve accurate fMRI signal reconstruction and identify spatiotemporal functional networks exhibiting multiscale properties that can be well characterized and interpreted based on current neuroscience knowledge.

源语言英语
主期刊名Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
编辑Dinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
出版商Springer Science and Business Media Deutschland GmbH
745-753
页数9
ISBN(印刷版)9783030322472
DOI
出版状态已出版 - 2019
活动22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, 中国
期限: 13 10月 201917 10月 2019

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
11766 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
国家/地区中国
Shenzhen
时期13/10/1917/10/19

指纹

探究 'Identify Hierarchical Structures from Task-Based fMRI Data via Hybrid Spatiotemporal Neural Architecture Search Net' 的科研主题。它们共同构成独一无二的指纹。

引用此