Hyperspectral Anomaly Detection with CNN-Based VAE and RX Algorithm

Linruize Tang, Yingjie Song, Jinwei Li, Qiang Li, Rengang Li, Ruidong Li, Jie Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Hyperspectral imaging (HSI) offers rich spectral and spatial information, making anomaly detection in hyperspectral images a critical and widely applied task. While combining Variational Autoencoders (VAE) with the Reed-Xiaoli (RX) algorithm has shown advantages, existing methods often rely on individual pixels without fully exploiting spatial information. In this work, we propose a CNN-based VAE framework that extracts latent representations from multi-scale data cubes, which are then analyzed by the RX algorithm to detect anomalies. This method effectively incorporates both spectral and spatial information, addressing the limitations of existing detectors.

源语言英语
主期刊名2024 IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2024
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798350366556
DOI
出版状态已出版 - 2024
活动14th IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2024 - Hybrid, Bali, 印度尼西亚
期限: 19 8月 202422 8月 2024

出版系列

姓名2024 IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2024

会议

会议14th IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2024
国家/地区印度尼西亚
Hybrid, Bali
时期19/08/2422/08/24

指纹

探究 'Hyperspectral Anomaly Detection with CNN-Based VAE and RX Algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此