Hyperspectral and Multispectral Image Fusion Using Non-Convex Relaxation Low Rank and Total Variation Regularization

Yue Yuan, Qi Wang, Xuelong Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Hyperspectral (HS) and multispectral (MS) image fusion is an important task to construct an HS image with high spatial and spectral resolutions. In this paper, we present a novel HS and MS fusion method using non-convex low rank tensor approximation and total variation regularization. In specific, the Laplace based low-rank model is formed to exploit spatial-spectral correlation and nonlocal similarity of the HS image, and the second-order total variation is used to describe the local smoothness structure in the spatial domain and adjacent bands. Also, an effective optimization algorithm is designed for the proposed model. In the experiments, we demonstrate the superiority of the proposed method compared to several state-of-the-art approaches.

源语言英语
主期刊名2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2683-2686
页数4
ISBN(电子版)9781728163741
DOI
出版状态已出版 - 26 9月 2020
活动2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, 美国
期限: 26 9月 20202 10月 2020

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)

会议

会议2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020
国家/地区美国
Virtual, Waikoloa
时期26/09/202/10/20

指纹

探究 'Hyperspectral and Multispectral Image Fusion Using Non-Convex Relaxation Low Rank and Total Variation Regularization' 的科研主题。它们共同构成独一无二的指纹。

引用此