How unlabeled web videos help complex event detection?

Huan Liu, Qinghua Zheng, Minnan Luo, Dingwen Zhang, Xiaojun Chang, Cheng Deng

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

The lack of labeled exemplars is an important factor that makes the task of multimedia event detection (MED) complicated and challenging. Utilizing artificially picked and labeled external sources is an effective way to enhance the performance of MED. However, building these data usually requires professional human annotators, and the procedure is too time-consuming and costly to scale. In this paper, we propose a new robust dictionary learning framework for complex event detection, which is able to handle both labeled and easy-to-get unlabeled web videos by sharing the same dictionary. By employing the lq-norm based loss jointly with the structured sparsity based regularization, our model shows strong robustness against the substantial noisy and outlier videos from open source. We exploit an effective optimization algorithm to solve the proposed highly non-smooth and non-convex problem. Extensive experiment results over standard datasets of TRECVID MEDTest 2013 and TRECVID MEDTest 2014 demonstrate the effectiveness and superiority of the proposed framework on complex event detection.

源语言英语
主期刊名26th International Joint Conference on Artificial Intelligence, IJCAI 2017
编辑Carles Sierra
出版商International Joint Conferences on Artificial Intelligence
4040-4046
页数7
ISBN(电子版)9780999241103
DOI
出版状态已出版 - 2017
活动26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, 澳大利亚
期限: 19 8月 201725 8月 2017

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
0
ISSN(印刷版)1045-0823

会议

会议26th International Joint Conference on Artificial Intelligence, IJCAI 2017
国家/地区澳大利亚
Melbourne
时期19/08/1725/08/17

指纹

探究 'How unlabeled web videos help complex event detection?' 的科研主题。它们共同构成独一无二的指纹。

引用此