Hierarchical feature hashing for fast dimensionality reduction

Bin Zhao, Eric P. Xing

科研成果: 书/报告/会议事项章节会议稿件同行评审

7 引用 (Scopus)

摘要

Curse of dimensionality is a practical and challenging problem in image categorization, especially in cases with a large number of classes. Multi-class classification encounters severe computational and storage problems when dealing with these large scale tasks. In this paper, we propose hierarchical feature hashing to effectively reduce dimensionality of parameter space without sacrificing classification accuracy, and at the same time exploit information in semantic taxonomy among categories. We provide detailed theoretical analysis on our proposed hashing method. Moreover, experimental results on object recognition and scene classification further demonstrate the effectiveness of hierarchical feature hashing.

源语言英语
主期刊名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
出版商IEEE Computer Society
2051-2058
页数8
ISBN(电子版)9781479951178, 9781479951178
DOI
出版状态已出版 - 24 9月 2014
已对外发布
活动27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014 - Columbus, 美国
期限: 23 6月 201428 6月 2014

出版系列

姓名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN(印刷版)1063-6919

会议

会议27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
国家/地区美国
Columbus
时期23/06/1428/06/14

指纹

探究 'Hierarchical feature hashing for fast dimensionality reduction' 的科研主题。它们共同构成独一无二的指纹。

引用此