Heat transfer time determination based on DNA melting curve analysis

Hanliang Zhu, Huanan Li, Haoqing Zhang, Zdenka Fohlerova, Sheng Ni, Jaroslav Klempa, Imrich Gablech, Jaromir Hubalek, Honglong Chang, Levent Yobas, Pavel Neuzil

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

The determination of the physical properties of fluids—such as the thermal characteristics, which include heat transfer time (Δt)—is becoming more challenging as system sizes shrink to micro- and nanometer scales. Hence, knowledge of these properties is crucial for the operation of devices requiring precise temperature (T) control, such as polymerase chain reactions, melting curve analysis (MCA), and differential scanning fluorimetry. In this paper, we introduced a flow-through microfluidic system to analyze thermal properties such as Δt among samples and the sidewall of a silicon chip using microscopic image analysis. We performed a spatial MCA with double-stranded deoxyribonucleic acid (dsDNA) and EvaGreen intercalator, using a flow-through microfluidic chip, and achieved a T gradient of ≈ 2.23 K mm−1. We calculated the mean value of Δt as ≈ 33.9 ms from a melting temperature (TM) location shift along the microchannel for a variable flow rate. Our system had a T resolution of ≈ 1.2 mK pixel−1 to distinguish different dsDNA molecules—based on the TM location within the chip—providing an option to use it as a high-throughput device for rapid DNA or protein analysis.

源语言英语
文章编号7
期刊Microfluidics and Nanofluidics
24
1
DOI
出版状态已出版 - 1 1月 2020

指纹

探究 'Heat transfer time determination based on DNA melting curve analysis' 的科研主题。它们共同构成独一无二的指纹。

引用此