Hand Posture and Force Estimation Using Surface Electromyography and an Artificial Neural Network

Mengcheng Wang, Chuan Zhao, Alan Barr, Hao Fan, Suihuai Yu, Jay Kapellusch, Carisa Harris Adamson

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

Objective: The purpose of this study was to develop an approach to predict hand posture (pinch versus grip) and grasp force using forearm surface electromyography (sEMG) and artificial neural networks (ANNs) during tasks that varied repetition rate and duty cycle. Background: Prior studies have used electromyography with machine learning models to predict grip force but relatively few studies have assessed whether both hand posture and force can be predicted, particularly at varying levels of duty cycle and repetition rate. Method: Fourteen individuals participated in this experiment. sEMG data for five forearm muscles and force output data were collected. Calibration data (25, 50, 75, 100% of maximum voluntary contraction (MVC)) were used to train ANN models to predict hand posture (pinch versus grip) and force magnitude while performing tasks that varied load, repetition rate, and duty cycle. Results: Across all participants, overall hand posture prediction accuracy was 79% (0.79 ±.08), whereas overall hand force prediction accuracy was 73% (0.73 ±.09). Accuracy ranged between 0.65 and 0.93 based on varying repetition rate and duty cycle. Conclusion: Hand posture and force prediction were possible using sEMG and ANNs, though there were important differences in the accuracy of predictions based on task characteristics including duty cycle and repetition rate. Application: The results of this study could be applied to the development of a dosimeter used for distal upper extremity biomechanical exposure measurement, risk assessment, job (re)design, and return to work programs.

源语言英语
页(从-至)382-402
页数21
期刊Human Factors
65
3
DOI
出版状态已出版 - 5月 2023

指纹

探究 'Hand Posture and Force Estimation Using Surface Electromyography and an Artificial Neural Network' 的科研主题。它们共同构成独一无二的指纹。

引用此