Fractional chromatic numbers of tensor products of three graphs

Jimeng Xiao, Huajun Zhang, Shenggui Zhang

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

The tensor product (G1,G2,G3) of graphs G1, G2 and G3 is defined by V(G1,G2,G3)=V(G1)×V(G2)×V(G3)and E(G1,G2,G3)=((u1,u2,u3),(v1,v2,v3)):|{i:(ui,vi)∈E(Gi)}|≥2.Let χf(G) be the fractional chromatic number of a graph G. In this paper, we prove that if one of the three graphs G1, G2 and G3 is a circular clique, χf(G1,G2,G3)=min{χf(G1f(G2),χf(G1f(G3),χf(G2f(G3)}.

源语言英语
页(从-至)1310-1317
页数8
期刊Discrete Mathematics
342
5
DOI
出版状态已出版 - 5月 2019

指纹

探究 'Fractional chromatic numbers of tensor products of three graphs' 的科研主题。它们共同构成独一无二的指纹。

引用此