Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning

Chong Ma, Hanqi Jiang, Wenting Chen, Yiwei Li, Zihao Wu, Xiaowei Yu, Zhengliang Liu, Lei Guo, Dajiang Zhu, Tuo Zhang, Dinggang Shen, Tianming Liu, Xiang Li

科研成果: 期刊稿件会议文章同行评审

摘要

In the medical multi-modal frameworks, the alignment of cross-modality features presents a significant challenge. However, existing works have learned features that are implicitly aligned from the data, without considering the explicit relationships in the medical context. This data-reliance may lead to low generalization of the learned alignment relationships. In this work, we propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of medical visual and textual features. We explore the natural auxiliary role of radiologists' eye-gaze data in aligning medical images and text, and introduce a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. We conduct downstream tasks of image classification and image-text retrieval on four medical datasets, where EGMA achieved state-of-the-art performance and stronger generalization across different datasets. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal alignment framework.

源语言英语
期刊Advances in Neural Information Processing Systems
37
出版状态已出版 - 2024
活动38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, 加拿大
期限: 9 12月 202415 12月 2024

指纹

探究 'Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此