TY - GEN
T1 - Exploring Functional Difference Between Gyri and Sulci via Region-Specific 1D Convolutional Neural Networks
AU - Jiang, Mingxin
AU - Yang, Shimin
AU - Yan, Jiadong
AU - Zhang, Shu
AU - Liu, Huan
AU - Zhao, Lin
AU - Dai, Haixing
AU - Lv, Jinglei
AU - Zhang, Tuo
AU - Liu, Tianming
AU - Kendrick, Keith M.
AU - Jiang, Xi
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - The cerebral cortex is highly folded as convex gyri and concave sulci. Accumulating evidence has consistently suggested the morphological, structural, and functional differences between gyri and sulci, which are further supported by recent studies adopting deep learning methodologies. For instance, one of the pioneering studies demonstrated the intrinsic functional difference of neural activities between gyri and sulci by means of a convolutional neural network (CNN) based classifier on fMRI BOLD signals. While those studies revealed the holistic gyro-sulcal neural activity difference in the whole-brain scale, the characteristics of such gyro-sulcal difference within different brain regions, which account for specific brain functions, remains to be explored. In this study, we designed a region-specific one-dimensional (1D) CNN based classifier in order to differentiate gyro-sulcal resting state fMRI signals within each brain region. Time-frequency analysis was further performed on the learned 1D-CNN model to characterize the gyro-sulcal neural activity difference in different frequency scales of each brain region. Experiments results based on 900 subjects across 4 repeated resting-state fMRI scans from Human Connectome Project consistently showed that the gyral and sulcal signals could be differentiated within a majority of regions. Moreover, the gyral and sulcal filters exhibited different frequency characteristics in different scales across brain regions, suggesting that gyri and sulci may play different functional roles for different brain functions. To our best knowledge, this study provided one of the earliest mapping of the functional segregation of gyri/sulci for different brain regions, which helps better understand brain function mechanism.
AB - The cerebral cortex is highly folded as convex gyri and concave sulci. Accumulating evidence has consistently suggested the morphological, structural, and functional differences between gyri and sulci, which are further supported by recent studies adopting deep learning methodologies. For instance, one of the pioneering studies demonstrated the intrinsic functional difference of neural activities between gyri and sulci by means of a convolutional neural network (CNN) based classifier on fMRI BOLD signals. While those studies revealed the holistic gyro-sulcal neural activity difference in the whole-brain scale, the characteristics of such gyro-sulcal difference within different brain regions, which account for specific brain functions, remains to be explored. In this study, we designed a region-specific one-dimensional (1D) CNN based classifier in order to differentiate gyro-sulcal resting state fMRI signals within each brain region. Time-frequency analysis was further performed on the learned 1D-CNN model to characterize the gyro-sulcal neural activity difference in different frequency scales of each brain region. Experiments results based on 900 subjects across 4 repeated resting-state fMRI scans from Human Connectome Project consistently showed that the gyral and sulcal signals could be differentiated within a majority of regions. Moreover, the gyral and sulcal filters exhibited different frequency characteristics in different scales across brain regions, suggesting that gyri and sulci may play different functional roles for different brain functions. To our best knowledge, this study provided one of the earliest mapping of the functional segregation of gyri/sulci for different brain regions, which helps better understand brain function mechanism.
KW - Convolutional neural network
KW - Cortical folding
KW - Functional MRI
UR - http://www.scopus.com/inward/record.url?scp=85092729231&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59861-7_26
DO - 10.1007/978-3-030-59861-7_26
M3 - 会议稿件
AN - SCOPUS:85092729231
SN - 9783030598600
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 250
EP - 259
BT - Machine Learning in Medical Imaging - 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Proceedings
A2 - Liu, Mingxia
A2 - Lian, Chunfeng
A2 - Yan, Pingkun
A2 - Cao, Xiaohuan
PB - Springer Science and Business Media Deutschland GmbH
T2 - 11th International Workshop on Machine Learning in Medical Imaging, MLMI 2020, held in conjunction with the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2020
Y2 - 4 October 2020 through 4 October 2020
ER -