Experimental study of sand particle deposition on a film-cooled turbine blade at different gas temperatures and angles of attack

Fei Zhang, Zhenxia Liu, Zhengang Liu, Weinan Diao

科研成果: 期刊稿件文章同行评审

17 引用 (Scopus)

摘要

Particle deposition tests were conducted in a turbine deposition facility with an internally staged single-tube combustor to investigate the individual effect of the gas temperature and angle of attack. Sand particles were seeded to the combustor and deposited on a turbine blade with film-cooling holes at temperatures representative of modern engines. Fuel-air ratios were varied from 0.022 to 0.037 to achieve a gas temperature between 1272 and 1668 K. Results show that capture efficiency increased with increasing gas temperature. A dramatic increase in capture efficiency was noted when gas temperature exceeded the threshold. The deposition formed mostly downstream of the film-cooling holes on the pressure surface, while it concentrated on the suction surface at the trailing edge. Deposition tests at angles of attack between 10 and 40 presented changes in both deposition mass and distribution. The capture efficiency increased with the increase in the angle of attack, and simultaneously the growth rate slowed down. On the blade pressure surface, sand deposition was distributed mainly downstream of the film-cooling holes near the trailing edge in the case of the small angle of attack, while it concentrated on the region around the film-cooling holes near the leading edge, resulting in the partial blockage of holes, in the case of the large angle of attack.

源语言英语
文章编号811
期刊Energies
13
4
DOI
出版状态已出版 - 2020

指纹

探究 'Experimental study of sand particle deposition on a film-cooled turbine blade at different gas temperatures and angles of attack' 的科研主题。它们共同构成独一无二的指纹。

引用此