Evidence combination for a large number of sources

Kuang Zhou, Arnaud Martin, Quan Pan

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

The theory of belief functions is an effective tool to deal with the multiple uncertain information. In recent years, many evidence combination rules have been proposed in this framework, such as the conjunctive rule, the cautious rule, the PCR (Proportional Conflict Redistribution) rules and so on. These rules can be adopted for different types of sources. However, most of these rules are not applicable when the number of sources is large. This is due to either the complexity or the existence of an absorbing element (such as the total conflict mass function for the conjunctive-based rules when applied on unreliable evidence). In this paper, based on the assumption that the majority of sources are reliable, a combination rule for a large number of sources, named LNS (stands for Large Number of Sources), is proposed on the basis of a simple idea: the more common ideas one source shares with others, the more reliable the source is. This rule is adaptable for aggregating a large number of sources among which some are unreliable. It will keep the spirit of the conjunctive rule to reinforce the belief on the focal elements with which the sources are in agreement. The mass on the empty set will be kept as an indicator of the conflict. Moreover, it can be used to elicit the major opinion among the experts. The experimental results on synthetic mass functions verify that the rule can be effectively used to combine a large number of mass functions and to elicit the major opinion.

源语言英语
主期刊名20th International Conference on Information Fusion, Fusion 2017 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9780996452700
DOI
出版状态已出版 - 11 8月 2017
活动20th International Conference on Information Fusion, Fusion 2017 - Xi'an, 中国
期限: 10 7月 201713 7月 2017

出版系列

姓名20th International Conference on Information Fusion, Fusion 2017 - Proceedings

会议

会议20th International Conference on Information Fusion, Fusion 2017
国家/地区中国
Xi'an
时期10/07/1713/07/17

指纹

探究 'Evidence combination for a large number of sources' 的科研主题。它们共同构成独一无二的指纹。

引用此