Estimating Tissue Microstructure with Undersampled Diffusion Data via Graph Convolutional Neural Networks

the UNC/UMN Baby Connectome Project Consortium

科研成果: 书/报告/会议事项章节会议稿件同行评审

16 引用 (Scopus)

摘要

Advanced diffusion models for tissue microstructure are widely employed to study brain disorders. However, these models usually require diffusion MRI (DMRI) data with densely sampled q-space, which is prohibitive in clinical settings. This problem can be resolved by using deep learning techniques, which learn the mapping between sparsely sampled q-space data and the high-quality diffusion microstructural indices estimated from densely sampled data. However, most existing methods simply view the input DMRI data as a vector without considering data structure in the q-space. In this paper, we propose to overcome this limitation by representing DMRI data using graphs and utilizing graph convolutional neural networks to estimate tissue microstructure. Our method makes full use of the q-space angular neighboring information to improve estimation accuracy. Experimental results based on data from the Baby Connectome Project demonstrate that our method outperforms state-of-the-art methods both qualitatively and quantitatively.

源语言英语
主期刊名Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
编辑Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
出版商Springer Science and Business Media Deutschland GmbH
280-290
页数11
ISBN(印刷版)9783030597276
DOI
出版状态已出版 - 2020
已对外发布
活动23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, 秘鲁
期限: 4 10月 20208 10月 2020

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12267 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
国家/地区秘鲁
Lima
时期4/10/208/10/20

指纹

探究 'Estimating Tissue Microstructure with Undersampled Diffusion Data via Graph Convolutional Neural Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此