Efficient Blind Hyperspectral Unmixing with Non-Local Spatial Information Based on Swin Transformer

Yun Wang, Shuaikai Shi, Jie Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

Blind hyperspectral unmixing (HU) involves identifying pixel spectra as distinct materials (endmembers) and simultaneously determining their proportions (abundances) at each pixel. In this paper, we present Swin-HU, a novel method based on the Swin Transformer, designed to efficiently tackle blind HU. This method addresses the limitations of existing techniques, such as Convolutional Neural Networks (CNNs) and Vision Transformers (ViT), in capturing global spatial information and spectral sequence attributes. Swin-HU employs Window Multi-head Self-Attention (W-MSA) and Shifted Window Multi-head Self-Attention (SW-MSA) mechanisms to extract global spatial priors while maintaining linear computational complexity. We evaluate Swin-HU against six other unmixing methods on both synthetic and real datasets, demonstrating its superior performance in endmember extraction and abundance estimation. The source code is available at https://github.com/wangyunjeff/Swin-HU.

源语言英语
主期刊名IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
5898-5901
页数4
ISBN(电子版)9798350320107
DOI
出版状态已出版 - 2023
活动2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, 美国
期限: 16 7月 202321 7月 2023

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2023-July

会议

会议2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
国家/地区美国
Pasadena
时期16/07/2321/07/23

指纹

探究 'Efficient Blind Hyperspectral Unmixing with Non-Local Spatial Information Based on Swin Transformer' 的科研主题。它们共同构成独一无二的指纹。

引用此