Discriminative CNN via metric learning for hyperspectral classification

Zhongqi Tian, Zhi Zhang, Shaohui Mei, Ruoqiao Jiang, Shuai Wan, Qian Du

科研成果: 会议稿件论文同行评审

3 引用 (Scopus)

摘要

Convolutional neural networks (CNNs) have been demonstrated to be capable of learning effective spatial-spectral features for hyperspectral classification. However, traditional CNNs are mainly trained using classification errors in decision domain. In this paper, a metric learning based training strategy is proposed to further enhance feature separability by training CNNs in feature domain as well as decision domain. Specifically, a metric learning loss function is designed to train CNNs in the second last fully connected feature layer, instead of the last fully connected decision layer. As a result, both within-class feature similarity and between-class feature separability can be enhanced even with a small amount of training samples. Experimental results over two benchmark hyperspectral data sets demonstrate that the proposed metric learning strategy is very effective to explore more discriminative features and its performance obviously outperforms several state-of-art CNNs for classification of hyperspectral images.

源语言英语
580-583
页数4
DOI
出版状态已出版 - 2019
活动39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Yokohama, 日本
期限: 28 7月 20192 8月 2019

会议

会议39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019
国家/地区日本
Yokohama
时期28/07/192/08/19

指纹

探究 'Discriminative CNN via metric learning for hyperspectral classification' 的科研主题。它们共同构成独一无二的指纹。

引用此