Discrete Multiple Kernel k-means

Rong Wang, Jitao Lu, Yihang Lu, Feiping Nie, Xuelong Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

23 引用 (Scopus)

摘要

The multiple kernel k-means (MKKM) and its variants utilize complementary information from different kernels, achieving better performance than kernel k-means (KKM). However, the optimization procedures of previous works all comprise two stages, learning the continuous relaxed label matrix and obtaining the discrete one by extra discretization procedures. Such a two-stage strategy gives rise to a mismatched problem and severe information loss. To address this problem, we elaborate a novel Discrete Multiple Kernel k-means (DMKKM) model solved by an optimization algorithm that directly obtains the cluster indicator matrix without subsequent discretization procedures. Moreover, DMKKM can strictly measure the correlations among kernels, which is capable of enhancing kernel fusion by reducing redundancy and improving diversity. What's more, DMKKM is parameter-free avoiding intractable hyperparameter tuning, which makes it feasible in practical applications. Extensive experiments illustrated the effectiveness and superiority of the proposed model.

源语言英语
主期刊名Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
编辑Zhi-Hua Zhou
出版商International Joint Conferences on Artificial Intelligence
3111-3117
页数7
ISBN(电子版)9780999241196
DOI
出版状态已出版 - 2021
活动30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, 加拿大
期限: 19 8月 202127 8月 2021

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
ISSN(印刷版)1045-0823

会议

会议30th International Joint Conference on Artificial Intelligence, IJCAI 2021
国家/地区加拿大
Virtual, Online
时期19/08/2127/08/21

指纹

探究 'Discrete Multiple Kernel k-means' 的科研主题。它们共同构成独一无二的指纹。

引用此