Diffusion LMS for multitask problems with overlapping hypothesis subspaces

Jie Chen, Cedric Richard, Alfred O. Hero, Ali H. Sayed

科研成果: 书/报告/会议事项章节会议稿件同行评审

38 引用 (Scopus)

摘要

There are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously by networked agents. In this paper, we formulate an online multitask learning problem where node hypothesis spaces partly overlap. A cooperative algorithm based on diffusion adaptation is derived. Some results on its stability and convergence properties are also provided. Simulations are conducted to illustrate the theoretical results.

源语言英语
主期刊名IEEE International Workshop on Machine Learning for Signal Processing, MLSP
编辑Mamadou Mboup, Tulay Adali, Eric Moreau, Jan Larsen
出版商IEEE Computer Society
ISBN(电子版)9781479936946
DOI
出版状态已出版 - 14 11月 2014
已对外发布
活动2014 24th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2014 - Reims, 法国
期限: 21 9月 201424 9月 2014

出版系列

姓名IEEE International Workshop on Machine Learning for Signal Processing, MLSP
ISSN(印刷版)2161-0363
ISSN(电子版)2161-0371

会议

会议2014 24th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2014
国家/地区法国
Reims
时期21/09/1424/09/14

指纹

探究 'Diffusion LMS for multitask problems with overlapping hypothesis subspaces' 的科研主题。它们共同构成独一无二的指纹。

引用此