Deep generative autoencoder for low-dimensional embeding extraction from single-cell RNAseq data

Shiquan Sun, Yang Liu, Xuequn Shang

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Single-cell RNA sequencing (scRNAseq) can reveal biological diversity at the cellular level that are unexplored by bulk RNA sequencing (RNAseq), but they suffer from the excessive zero expression counts and the limitation of the scalability in practice. Here, we propose a non-linear generative autoencoder based method, scSVA, relying on an integration of variational autoencoder and dropout imputations. Specifically, scSVA automatically identifies the dropouts and recovery these values only to avoid introducing new biases. Then, scSVA utilizes stochastic optimization and deep neural network to extract the low-dimensional embedding from gene expression levels. We illustrate the benefits of scSVA through in-depth real analyses of six published scRNAseq data sets. scSVA is up to 1.3 times more powerful cell clustering accuracy than existing approaches. The high power of scSVA allows us to identify new cell types that reveal new biology from scRNAseq data that otherwise cannot be revealed by existing approaches.

源语言英语
主期刊名Proceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019
编辑Illhoi Yoo, Jinbo Bi, Xiaohua Tony Hu
出版商Institute of Electrical and Electronics Engineers Inc.
1365-1372
页数8
ISBN(电子版)9781728118673
DOI
出版状态已出版 - 11月 2019
活动2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 - San Diego, 美国
期限: 18 11月 201921 11月 2019

出版系列

姓名Proceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019

会议

会议2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019
国家/地区美国
San Diego
时期18/11/1921/11/19

指纹

探究 'Deep generative autoencoder for low-dimensional embeding extraction from single-cell RNAseq data' 的科研主题。它们共同构成独一无二的指纹。

引用此