DEEP CONVOLUTIONAL SPARSE CODING NETWORK FOR PANSHARPENING WITH GUIDANCE OF SIDE INFORMATION

Shuang Xu, Jiangshe Zhang, Kai Sun, Zixiang Zhao, Lu Huang, Junmin Liu, Chunxia Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

11 引用 (Scopus)

摘要

Pansharpening is a fundamental issue in remote sensing field. This paper proposes a side information partially guided convolutional sparse coding (SCSC) model for pansharpening. The key idea is to split the low resolution multispectral image into a panchromatic image related feature map and a panchromatic image irrelated feature map, where the former one is regularized by the side information from panchromatic images. With the principle of algorithm unrolling techniques, the proposed model is generalized as a deep neural network, called as SCSC pansharpening neural network (SCSC-PNN). Compared with 13 classic and state-of-the-art methods on three satellites, the numerical experiments show that SCSC-PNN is superior to others. The codes are available at https://github.com/xsxjtu/SCSC-PNN.

源语言英语
主期刊名2021 IEEE International Conference on Multimedia and Expo, ICME 2021
出版商IEEE Computer Society
ISBN(电子版)9781665438643
DOI
出版状态已出版 - 2021
已对外发布
活动2021 IEEE International Conference on Multimedia and Expo, ICME 2021 - Shenzhen, 中国
期限: 5 7月 20219 7月 2021

出版系列

姓名Proceedings - IEEE International Conference on Multimedia and Expo
ISSN(印刷版)1945-7871
ISSN(电子版)1945-788X

会议

会议2021 IEEE International Conference on Multimedia and Expo, ICME 2021
国家/地区中国
Shenzhen
时期5/07/219/07/21

指纹

探究 'DEEP CONVOLUTIONAL SPARSE CODING NETWORK FOR PANSHARPENING WITH GUIDANCE OF SIDE INFORMATION' 的科研主题。它们共同构成独一无二的指纹。

引用此