DCNGAN: A DEFORMABLE CONVOLUTION-BASED GAN WITH QP ADAPTATION FOR PERCEPTUAL QUALITY ENHANCEMENT OF COMPRESSED VIDEO

Saiping Zhang, Luis Herranz, Marta Mrak, Marc Górriz Blanch, Shuai Wan, Fuzheng Yang

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

In this paper, we propose a deformable convolution-based generative adversarial network (DCNGAN) for perceptual quality enhancement of compressed videos. DCNGAN is also adaptive to the quantization parameters (QPs). Compared with optical flows, deformable convolutions are more effective and efficient to align frames. Deformable convolutions can operate on multiple frames, thus leveraging more temporal information, which is beneficial for enhancing the perceptual quality of compressed videos. Instead of aligning frames in a pairwise manner, the deformable convolution can process multiple frames simultaneously, which leads to lower computational complexity. Experimental results demonstrate that the proposed DCNGAN outperforms other state-of-the-art compressed video quality enhancement algorithms.

源语言英语
主期刊名2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2035-2039
页数5
ISBN(电子版)9781665405409
DOI
出版状态已出版 - 2022
活动2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022 - Hybrid, 新加坡
期限: 22 5月 202227 5月 2022

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2022-May
ISSN(印刷版)1520-6149

会议

会议2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022
国家/地区新加坡
Hybrid
时期22/05/2227/05/22

指纹

探究 'DCNGAN: A DEFORMABLE CONVOLUTION-BASED GAN WITH QP ADAPTATION FOR PERCEPTUAL QUALITY ENHANCEMENT OF COMPRESSED VIDEO' 的科研主题。它们共同构成独一无二的指纹。

引用此