Data Generation with GAN Networks for Sidescan Sonar in Semantic Segmentation Applications

Dianyu Yang, Can Wang, Chensheng Cheng, Guang Pan, Feihu Zhang

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

In the realm of underwater exploration, particularly within the domain of autonomous detection, sidescan sonar stands as a pivotal sensor apparatus. Autonomous detection models necessitate a substantial volume of scanned sonar image data for optimal training, yet the challenges and costs associated with acquiring such data pose significant limitations on the deployment of autonomous detection models in underwater exploration scenarios. Consequently, there arises a demand for the development of cost-effective data augmentation techniques. In the present investigation, an initial collection of scanned sonar image data was conducted during lake trials, encompassing diverse environmental regions, including rocky terrain, shadowed areas, and aquatic bodies. Subsequently, a proprietary generative adversarial network (GAN) model was devised for the purpose of synthesizing scanned sonar data. The synthesized data underwent denoising and underwent post-processing via algorithmic methods. Subsequently, similarity metrics were computed to gauge the quality of the generated scanned sonar data. Furthermore, a semantic segmentation model was meticulously crafted and trained by employing authentic data. The generated data were subsequently introduced into this semantic segmentation model. The output outcomes demonstrated that the model exhibited preliminary labeling proficiency on the generated image data, requiring only minimal manual intervention to conform to the standards of a conventional dataset. Following the inclusion of the labeled data into the original dataset and the subsequent training of the network model utilizing the expanded dataset, there was an observed discernible enhancement in the segmentation performance of the model.

源语言英语
文章编号1792
期刊Journal of Marine Science and Engineering
11
9
DOI
出版状态已出版 - 9月 2023

指纹

探究 'Data Generation with GAN Networks for Sidescan Sonar in Semantic Segmentation Applications' 的科研主题。它们共同构成独一无二的指纹。

引用此