Damage evolution of CFRP laminates by normal and oblique impact erosion of pulsating water jets

Naidan Hou, Renxi Zhao, Yifan Yue, Xuan Wang, Hao Cui, Yulong Li

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Impact direction is one of the critical factors affecting the waterdrop erosion behavior of materials. In this paper, rain erosion damage behavior of a typical carbon fiber reinforced polymer (CFRP) laminate is investigated as a function of the impingement angle (0° as normal impact and 15°, 30°, 45° as oblique impact deviated from the normal) and the relative fiber orientation (parallel PA and perpendicular PE to the fiber direction of the surface layer) under the waterjet velocity of 320 m/s and the impact frequency of 50 Hz via a pulsating waterjet erosion test rig. After continuous impact of multiple waterjets, the typical damage of CFRP laminates is mainly composed of the central erosion crater and the upheaval of the surrounding surface layer. The onset and evolution of damage are mainly driven by the shear action of lateral jetting and stress concentration of hydraulic penetration exerted at the surface irregularities. There is no significant difference in the damage modes between the normal and oblique impacts, except for the asymmetric distributions of matrix cracking in PA-orientation and delamination in PE-orientation caused by the angle inclination. With the impingement angle increasing, the volume loss and erosion depth decrease while the incubation period increases mainly due to the decreases of water hammer pressure and contact area. The PA-orientation can cause lower incubation period and larger erosion mass loss than PE-orientation before the surface ply is penetrated, with the underlying mechanism related to the distinct tensile properties of CFRP laminates along longitudinal and transversal directions and the asymmetric properties of fiber–matrix interface. According to the fitting results of erosion curves, it is possible to describe the incubation period and the erosion rate of CFRP laminates under oblique impact using a two-branch equation, and Springer model can give reasonable prediction for the average incubation period and PA-orientation erosion rate of a certain oblique impact occasion with known 0° impact erosion results.

源语言英语
文章编号118079
期刊Composite Structures
338
DOI
出版状态已出版 - 15 6月 2024

指纹

探究 'Damage evolution of CFRP laminates by normal and oblique impact erosion of pulsating water jets' 的科研主题。它们共同构成独一无二的指纹。

引用此