摘要
Periodic dynamical systems ubiquitously exist in science and engineering. The harmonic balance (HB) method and its variants have been the most widely-used approaches for such systems, but are either confined to low-order approximations or impaired by aliasing and improper-sampling problems. Here we propose a collocation-based harmonic balance framework to successfully unify and reconstruct the HB-like methods. Under this framework a new conditional identity, which exactly bridges the gap between frequency-domain and time-domain harmonic analyses, is discovered by introducing a novel aliasing matrix. Upon enforcing the aliasing matrix to vanish, we propose a powerful reconstruction harmonic balance (RHB) method that obtains extremely high-order (>100) nonaliasing solutions, previously deemed out-of-reach, for a range of complex nonlinear systems including the cavitation bubble dynamics, the three-body problem and the two dimensional airfoil dynamics. We show that the present method is 2–3 orders of magnitude more accurate and simultaneously much faster than the state-of-the-art method. Hence, it has immediate applications in multidisciplinary problems where highly accurate periodic solutions are sought.
源语言 | 英语 |
---|---|
页(从-至) | 458-481 |
页数 | 24 |
期刊 | International Journal for Numerical Methods in Engineering |
卷 | 124 |
期 | 2 |
DOI | |
出版状态 | 已出版 - 30 1月 2023 |